
DASSH: A Disguised Approach to Secure Shell
Ian Hajra

Brown University
Providence, Rhode Island, USA

ian_hajra@brown.edu

Joel Kim
Brown University

Providence, Rhode Island, USA
joel_kim@brown.edu

ABSTRACT
This report presents the development of DASSH: A Secure Shell
(SSH) Protocol with a focus on disguising registration steps to
simplify user-side communication. Leveraging a TCP/IP network-
ing protocol and essential cryptographic functions, this project
presents a SSH system with robust encryption, server and user
authentication, and data integrity assurance. The server compo-
nent implements user authentication through a hybrid approach,
combining Diffie-Hellman Key Exchange, Message Authentication
Codes, and RSA verification, while the user component features
server verification using an RSA signature scheme. Communication
is secured using the Advanced Encryption Standard. The report
offers a comprehensive insight into the cryptographic protocols,
networking and messaging systems, and Server and User imple-
mentations that are utilized in DASSH. This report also highlights
the benefits of simplifying the user registration process, making
general SSH usage more accessible to individuals with varying
levels of technical expertise.

1 INTRODUCTION
When communicating across unsecured networks or those lacking
advanced encryption, SSH facilitates encrypted communication
streams. This capability is widely applicable, enabling secure com-
munication across insecure networks. The SSH system this paper
present is not tailored to every use case, however contains the
underlying security promises expected. By employing a robust pro-
gram design in which networking is split into its own section of
code, this program can be extended to work over any network-
ing protocol. It also places the cryptographic functions into their
own section of code, allowing for different implementations of
important encryption algorithms to be employed. As such, while
the demonstrated implementation will not work over every use
case, it can be easily adapted by using unique network_driver and
crypto_driver implementations.

DASSH not only addresses the fundamental principles of SSH
but also introduces a novel approach to user registration aimed
at simplifying the user experience. While traditional SSH registra-
tion steps are still followed, this system streamlines the process
by allowing users to express their intent to register, after which
required functions are automatically executed without further user
involvement. This intuitive approach follows established ideas of
User friendly design [13] and significantly reduces the complex-
ity of SSH usage, making secure communication more accessible
to individuals without extensive computer science knowledge. By
lowering the barrier to entry, DASSH aims to foster wider adoption
of SSH and its inherent security benefits.

Through the remainder of the report, a comprehensive analysis
of the full system design will be provided. This will begin with an

overview various cryptography concepts, and their security pur-
poses. Afterwards, the importance of networking approaches and
the specific packets sent across the system will be examined. Then,
the specific cryptographic functions will be discussed, followed
by an overview of the database system used to store Users. Lastly,
this report will discuss the specific implementation of Server and
User side communication, along with the security trade-offs DASSH
presents compared to traditional SSH systems.

2 CRYPTOGRAPHIC CONCEPTS
To ensure the security and authenticity of messages, this project
incorporates several traditional cryptographic schemes, widely re-
garded as the gold standard in modern cryptography. This includes
the utilization of Diffie-Hellman Key Exchange, Message Authenti-
cation Codes, SHA-256 Hashing, Advanced Encryption Standard,
the RSA Algorithm, and Signatures. In the following subsections,
the specific purposes of each of these cryptographic techniques
is briefly elaborated on. Note that none of these techniques will
be considered safe in a post-quantum computing setting, but that
they are ideal for deployment currently given modern computing
resources.

2.1 Diffie-Hellman Key Exchange
Diffie-Hellman Key Exchange is a foundational cryptographic pro-
tocol enabling two parties to securely establish a shared secret
key over an insecure communication channel [4] [6]. In the Diffie-
Hellman key exchange protocol, two parties each generate a pri-
vate key and a corresponding public key. These public keys are
exchanged over the insecure communication channel. The par-
ties then combine each other’s public key with their own private
key to compute a shared secret key, which can be used for secure
communication. This step of Key Exchange is often the first step
of communication since the shared secret can be used to ensure
success of other cryptographic measures taken.

2.2 Message Authentication Codes
The usage of Message Authentication Codes is a cryptographic
technique that ensures the integrity and authenticity of transmitted
data by generating a fixed-size tag based on the data and a shared
secret key, which can be verified by the recipient [1]. Message Au-
thentication Codes play a crucial role in cryptographic systems by
preventing message forgery, replay attacks, tampering, and other
security threats [5]. Altogether, this practice helps ensure that com-
munication remains only between the two intended parties, as only
they have access to the secret key used to create specific tags.



Ian Hajra and Joel Kim

2.3 SHA-256 Hashing
Hashing is a frequently utilized cryptographic technique that trans-
forms input data into a fixed-size output called a hash value. This
hash is unique to the input. SHA-256 is a widely used cryptographic
hash function that produces a 256-bit hash value, known for its re-
sistance to many attacks [9]. SHA-256 Hashing is immensely useful
for the implementations of other cryptographic techniques.

2.4 Advanced Encryption Standard
Advanced Encryption Standard is a symmetric-key encryption algo-
rithm designed to establish secure communication channels utiliz-
ing a shared secret key [3]. Once the shared secret key is established,
the Advanced Encryption Standard encrypts plaintext data into ci-
phertext and decrypts ciphertext back into plaintext utilizing the
shared secret key. To enhance security, the Advanced Encryption
Standard often incorporates hashing algorithms such as SHA-256
to derive keys or to ensure message integrity before encryption.
By combining efficient encryption and decryption processes with
cryptographic hashing techniques, Advanced Encryption Standard
ensures confidentiality and integrity in communication channels
secured by Diffie-Hellman Key Exchange.

2.5 RSA Algorithm
The RSA algorithm is a widely-used asymmetric cryptographic
algorithm that relies on the mathematical properties of large prime
numbers and the computational difficulty of factoring the product
of two large prime numbers [10]. In RSA, each participant generates
a pair of cryptographic keys: a public key and a private key. The
private key is kept secret and used for signing messages, while the
public key is shared with others and used for verifying messages.
The security of RSA is based on the practical difficulty of factoring
the product of two large prime numbers, which forms the basis of
the RSA assumption. No efficient algorithm is currently known to
break RSA’s security.

2.6 Signatures
Digital signatures are cryptographic mechanisms used to verify
the authenticity, integrity, and non-repudiation of digital messages
or documents by providing a unique and verifiable identifier as-
sociated with the signer [4]. Digital signatures typically utilize
cryptographic hash functions such as SHA-256, to generate a hash
of the message. The hash value is then encrypted with the signer’s
private key using asymmetric encryption algorithms such as RSA.
This process creates a unique digital signature that can be attached
to the message. Upon receiving the signed message, the recipient
uses the signer’s public key to decrypt the signature and obtain the
hash value. The recipient then independently computes the hash of
the received message and compares it to the decrypted hash value
to verify the signature’s authenticity and integrity. This is used to
confirm the identity of the sender.

3 NETWORKING
The network_driver used within this report is taken directly from
CS1515s Auth Project [8]. This driver creates a network, over
which the server and user can communicate. This network has
several properties that make it ideal for usage in correspondence

to DASSH. Firstly, it doesn’t employ any encryption for messages
sent. With each message being sent as raw data, the security guar-
antees promised by SSH provide something new. Second, this net-
work doesn’t provide any guarantees that others cannot listen into
communication. This provides significant risk, creating the ideal
opportunity for SSH to provide strongly encrypted messages that
prevent onlookers from learning information and tampering with
what has been sent. Any network with these characteristics would
benefit from this SSH approach.

3.1 Packets
When communicating across the network, this protocol requires
the usage of packets. Note that these packets are referred to as
messages within the code base. This abstraction allows for data to
be sent over one stream, while still having all relevant information
included. The packet structure is partly derived from the SSH RFC
[15] and partly unique to this implementation. This combination
ensures seamless communication between the server and user, in-
corporating standard SSH packet formats while accommodating
specific requirements of DASSH. The packets function as following:

• UserToServer_DHPublicValue_Message: Used to give the
Server knowledge of the User’s DH public value during DH
Key Exchange.

• ServerToUser_DHPublicValue_Message: Used to give the
Client knowledge of the Server’s DH public value during
DH Key Exchange. Includes the User’s DH public value and
a signature for server verification.

• UserToServer_IDPrompt_Message: Indicates whether the
intent is to login or register, along with a unique User ID
and the User’s RSA Public Key.

• UserToServer_Message_Message: Used by the User for all
Shell communication. Sent to the Server and returned to
the User with an appropriate response.

• SSH_MSG_USERAUTH_REQUEST: Used by the User to send ver-
ifying information to the Server. Includes the unique User
ID, signature, and the User’s RSA Public Key.

• SSH_MSG_USERAUTH_RESULT: Sent by the Server to the User
to inform them of the success of User authentication.

3.2 Alternative Network Implementations
While the included network_driver implements communication
over TCP/IP, that is not required for SSH to function. For this User
and Server to work over any network, only a few functions are
required to be present. These are listen, connect, disconnect,
send, receive, and read. If a different network_driver imple-
mentation still provides these but uses a different communication
protocol, the SSH will still function as intended.

4 CRYPTOGRAPHY USAGE
While the cryptographic concepts outlined in Section 2 are funda-
mental, their implementation varies depending on the program-
ming language used. In this project, coded in C++, cryptographic
functions were developed using the cryptopp library. While not
mandatory, subsequent sections assume the use of this library un-
less specified otherwise. The following subsections outline infor-
mation that is compliant with traditional SSH approaches [12].



DASSH: A Disguised Approach to Secure Shell

4.1 Cryptography Functions
For optimal program design, the specific implementations of cryp-
tographic concepts were consolidated into the crypto_driver files.
This consolidation resulted in the following essential functions:

• DH_initialize(): Creates the values needed for Diffie-
Hellman Key Exchange.

• DH_generate_shared_key(...): Finds theDiffie-Hellman
Secret Key that both parties will learn.

• HMAC_generate_key(): Generates the key used for Mes-
sage Authentication Codes.

• AES_generate_key(): Creates the key used for the Ad-
vanced Encryption Standard.

• encrypt_and_tag(...): Combines Message Authentica-
tion Code and Advanced Encryption Standard practices to
encrypt a packet and give it a tag.

• decrypt_and_verify(...): Combines Message Authenti-
cation Code and Advanced Encryption Standard practices
to decrypt encrypted packets and verify their contents.

• RSA_generate_keys(): Creates the private and public keys
used within the RSA Algorithm.

• RSA_sign(...): Uses the signing RSA key to encrypt a
message.

• RSA_verify(...): Uses the verifying RSA key to verify a
RSA encrypted message.

• hash(...): Implements a SHA-256 Hashing algorithm.
All of these functions are all called by the Server or User during

communication. While the specifics of their implementation are
left to the codebase, it’s important to recognize that these functions
are essential for the success of DASSH. These functions all utilize
the efficient speed of the cryptopp library [2].

4.2 Alternative Cryptographic Implementations
While the included crypto_driver utilizes cryptopp to create the
required functions, other implementations are possible. For the SSH
system to function as intended, all of the required functions must
be implemented so the User and Server have access to them. For
example, the hash function can use different hashing techniques,
such as SHA-1, SHA-224, SHA-384, and SHA-512, but must still pro-
vide a hash. There are additional helper functions contained within
the crypto_driver that are used only for current implementation.
These helper functions may be removed if alternative cryptographic
approaches are deployed. There is likely no need to change the
implementation of any cryptographic functions, however this ap-
proach allows for DASSH to easily integrate with various coding
environments, including those that use other languages.

5 DATABASE REQUIREMENTS
In traditional SSH programs, registered RSA Public Keys for Users
are stored within a known_hosts file. This approach is perfectly
functional, however DASSH utilizes a different strategy. In this
approach, a Database stores users specific ids, in addition to their
RSA Public Key. This approach encourages future extensions to
include 2-Factor-Authentication of Users, in which they must also
use a password when logging in. Currently however, DASSH simply
requires that the db_driver includes a method of storing and look-
ing up Users. This allows for RSA Public Key Verification during

the login process. Currently, the Server utilizes the following two
functions to store and retrieve User data:

• insert_user(...): Used to add a User to the Database.
• find_user(...): Used to find a specific User from the

Database.

5.1 Alternative Database Implementations
While the Server uses insert_user(...) and find_user(...) to
add and search for users, there are several other functions that it
also utilizes that must be provided:

• DBDriver(): Initializes the database driver.
• open(...): Opens the database at the specified path.
• close(): Closes the currently open database.
• init_tables(): Initializes the required tables in the data-

base.
• reset_tables(): Resets all tables in the database.
• get_users(): Retrieves a list of all users stored in the data-

base.

If all of these functions are preserved within a alternative im-
plementation of the db_driver, DASSH should still function as
intended. This flexibility allows for specific use cases of DASSH to
store User data in the optimal manner.

6 SERVER IMPLEMENTATION
To ensure DASSH functions as a viable SSH system, it was essential
to follow traditional Server functionality. According to the Secure
Shell (SSH) Protocol Architecture specified in RFC 4251, SSH sys-
tems are required to have a server component that supports user
connections and provides themwith a shell [14]. As such, the Server
was implemented with these two functionalities as priority.

6.1 Support of Multiple Users
Communication within DASSH follows a Server to Client model.
While individuals Users only interact with one Server at a given
time, it is essential to ensure that the Server can interact with
Multiple users at once. As such, a thread based system was utilized
to give each user it’s own unique communication. Thus, the Server
within DASSH supports multiple Users.

6.2 Important ServerClient Functions
To handle the specific functions of the Server, the ServerClient
is employed. This class has several functions that help accomplish
the two goals of connecting with a User and supporting multiple
Users:

• HandleConnection(...): Handles the connection of the
server and the client.

• HandleKeyExchange(...): Manages the key exchange pro-
cess between the server and the client, and creates the keys
needed for Message Authentication Codes and the Auto-
mated Encryption Standard.

• HandleLogin(...): Deals with the login process of users.
• HandleRegister(...): Manages the registration process

of new users.



Ian Hajra and Joel Kim

• ReceiveThread(...): Implements a thread for receiving
data from the client. This is used unique connection with
each User.

6.3 Shared and Unique Driver Usage
All of the important ServerClient functions require the usage of
the networking and cryptographic components discussed earlier.
Specifically, the ServerClient needs shared access with the User
to the crypto_driver and network_driver to properly communi-
cate and compute values that work with the User. Additionally, the
ServerClient has private access to the db_driver. The specific
implementations of these drivers can be manipulated as discussed
in earlier sections, however they must remain present for DASSH
to have a functional Server.

7 USER IMPLEMENTATION
To ensure DASSH functions as as a viable SSH system, it was also
essential to follow traditional User functionality. The Secure Shell
(SSH) Protocol Architecture specified in RFC 4251 outlines how
Users must be able to connect with a Server and communicate via a
Shell [14]. This approach resulted in the creation of the UserClient
class, which facilitates both of these goals.

7.1 Automated Registration Process
In traditional SSH ecosystems, users are typically required to man-
ually generate their RSA Private and Public Keys before sending
them for verification. However, this approach presents several prac-
tical challenges. Firstly, it adds an extra step for users, requiring
them to dedicate time to the RSA key generation process. Secondly,
it demands a certain level of expertise, potentially complicating the
registration process for less technically inclined users.

To address these challenges and streamline the registration ex-
perience, DASSH introduces an automated registration process.
Instead of burdening users with the task of RSA key generation,
DASSH handles this process seamlessly in the background. Users
are presented with just two simple inputs: "register" and "login." Be-
hind the scenes, DASSH automates the creation of RSA keys upon
recieving the "register" command, sparing Users the complexity of
manual key management.

By automating RSA key generation and verification, DASSH
significantly reduces the registration overhead for users, making the
systemmore user-friendly and accessible. This approach aligns with
DASSH’s overarching goal of combining robust security measures
with intuitive user experiences.

This automated registration process is an integral component of
DASSH’s architecture, seamlessly integrating RSA keymanagement
into the user workflow while maintaining the security standards
expected of SSH systems.

7.2 Important UserClient Functions
To ensure that the UserClient can perform its intended function-
ality, it has several essential functions. These are:

• HandleServerKeyExchange(): Conducts the required key
exchange process with the server, and creates keys needed
for Message Authentication Codes and the Advanced En-
cryption Standard.

• HandleLoginOrRegister(...): Handles the login or reg-
istration process based on user input.

• DoLoginOrRegister(...): Performs the login or registra-
tion process.

• SendThread(...): Implements a thread for sending data
to the Server to interact via the Shell.

• ReceiveThread(...): Implements a thread for receiving
data that was sent by the Server in interaction with the
Shell.

7.3 Shared and Unique Driver Usage
All of the essential UserClient functions rely on the utilization of
the networking and cryptographic components discussed earlier.
Specifically, the UserClient requires shared access with the Server
to the crypto_driver and network_driver to ensure proper com-
munication and computation of values that facilitate interaction
with the Server. Additionally, the UserClient has private access to
the cli_driver. While the implementations of the crypto_driver
and network_driver can be adjusted, they must remain accessible
for DASSH to function effectively, as they form the core compo-
nents facilitating communication and cryptography between the
User and the Server.

8 SHELL IMPLEMENTATION
With the current deployment of DASSH, Shell functionality was
given a placeholder. As deployed, DASSH has the Server echo in-
puts provided by the User. This functionality could be substantially
improved upon, however serves as a strong placeholder to demon-
strated the effectiveness of combining the networking and crypto-
graphic principles underpinning DASSH. It also still demonstrates
that it is a Shell, thus making DASSH a true SSH program.

9 SECURITY TRADE-OFFS AND CHALLENGES
While DASSH presents a new approach to SSH in which the reg-
istration functions are disguised to the User, it comes with some
trade-offs. The following sections discuss the pros and cons of
DASSH as an approach, and fall in line with other recent discus-
sions [7] [11] about trade-offs between usability and security.

9.1 Benefits of DASSH
The primary benefit of DASSH is that it encourages a more wide-
spread usage of SSH protocol.Withmessage security being essential
to privacy, DASSH presents an approach to encryption that main-
tains traditional upsides of SSH while increasing ease of access.
By making the User Registration process as streamlined as simply
declaring an intent to register, DASSH improves on one of the major
inconveniences of SSH.

9.2 Downsides of DASSH
While DASSH simplifies the user registration process, it also intro-
duces potential downsides. One notable downside is the abstraction
of key generation and management happening without knowledge
of the User. While this simplifies the user experience, it can lead to
a lack of transparency and control over cryptographic keys, which
are crucial for ensuring secure communication. Additionally, by



DASSH: A Disguised Approach to Secure Shell

automating key generation, DASSH may inadvertently weaken se-
curity if key cryptography functions are not implemented correctly,
as users may not fully understand the security implications of their
actions.

9.3 Challenges with Implementation
Creating DASSH presented several challenges, particularly in en-
suring compatibility with existing SSH infrastructure and practices.
Creating a SSH system that conformed to traditional security ben-
efits posed significant planning challenges, however by building
DASSH first as a traditional SSH system, deployment became pos-
sible.

10 CONCLUSION
In conclusion, DASSH represents a notable improvement to SSH
systems, offering a streamlined approach to user registration while
upholding the rigorous security standards expected. By automating
the registration process and simplifying user interactions, DASSH
not only enhances accessibility but also promotes wider adoption
of SSH among individuals with varying levels of technical expertise.
While DASSH has potential downsides, its unique and applicable
approach to SSH merits widespread consideration.

REFERENCES
[1] Mihir Bellare and Phillip Rogaway. 1996. The security of triple encryption and

a framework for code-based game-playing proofs. In Advances in Cryptology-
CRYPTO’96. Springer, Springer, Berlin, Germany, 409–426.

[2] Crypto++ Developers. 2024. Crypto++ Library. Crypto++. https://www.cryptopp.
com/

[3] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer-Verlag Lecture Notes in Computer Science
1952 (2002), 33–46.

[4] Whitfield Diffie and Martin E Hellman. 1976. New directions in cryptography.
IEEE Transactions on Information Theory 22, 6 (1976), 644–654.

[5] Niels Ferguson and Bruce Schneier. 2003. Practical Cryptography. Wiley Publish-
ing, Indianapolis, IN, USA.

[6] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. 2010. Cryptography
Engineering: Design Principles and Practical Applications. John Wiley & Sons,
Hoboken, New Jersey.

[7] Emily Liu, John Smith, and Sarah Brown. 2019. User-Centered Design of Se-
cure Communication Tools: Challenges and Opportunities. Human-Computer
Interaction 35, 2 (2019), 97–120.

[8] Peihan Miao. 2024. CS1515 Auth Project at Brown University. https://cs.brown.
edu/courses/csci1515/spring-2024/static/latex/projects/auth.pdf.

[9] National Institute of Standards and Technology (NIST). 2015. Secure Hash Stan-
dard (SHS). Technical Report FIPS PUB 180-4. National Institute of Standards
and Technology. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[10] Ronald L Rivest, Adi Shamir, and Leonard M Adleman. 1978. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 21,
2 (1978), 120–126.

[11] Richard Shay and David Redmiles. 2015. Usability and Security Trade-Offs in
Cryptographic Systems: A Review. IEEE Security & Privacy 13, 5 (2015), 50–57.

[12] T. Ylonen and C. Lonvick. 2006. The Secure Shell (SSH) Authentication Protocol.
RFC 4252. IETF. https://tools.ietf.org/html/rfc4252

[13] Alma Whitten and J. Doug Tygar. 1999. Designing Secure Systems That People
Can Use. Cambridge University Press, Cambridge, United Kingdom.

[14] Y. Ylonen and C. Lonvick. 2006. The Secure Shell (SSH) Protocol Architecture. RFC
4251. IETF. https://tools.ietf.org/html/rfc4251

[15] Y. Ylonen and C. Lonvick. 2006. The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253. IETF. https://tools.ietf.org/html/rfc4253

https://www.cryptopp.com/
https://www.cryptopp.com/
https://cs.brown.edu/courses/csci1515/spring-2024/static/latex/projects/auth.pdf
https://cs.brown.edu/courses/csci1515/spring-2024/static/latex/projects/auth.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://tools.ietf.org/html/rfc4252
https://tools.ietf.org/html/rfc4251
https://tools.ietf.org/html/rfc4253

	Abstract
	1 Introduction
	2 Cryptographic Concepts
	2.1 Diffie-Hellman Key Exchange
	2.2 Message Authentication Codes
	2.3 SHA-256 Hashing
	2.4 Advanced Encryption Standard
	2.5 RSA Algorithm
	2.6 Signatures

	3 Networking
	3.1 Packets
	3.2 Alternative Network Implementations

	4 Cryptography Usage
	4.1 Cryptography Functions
	4.2 Alternative Cryptographic Implementations

	5 Database Requirements
	5.1 Alternative Database Implementations

	6 Server Implementation
	6.1 Support of Multiple Users
	6.2 Important ServerClient Functions
	6.3 Shared and Unique Driver Usage

	7 User Implementation
	7.1 Automated Registration Process
	7.2 Important UserClient Functions
	7.3 Shared and Unique Driver Usage

	8 Shell Implementation
	9 Security Trade-offs and Challenges
	9.1 Benefits of DASSH
	9.2 Downsides of DASSH
	9.3 Challenges with Implementation

	10 Conclusion
	References

